

29 January 2014 ASX Code: COY

ASX Announcement

NAKRU-02: SAMPLE ANALYSIS AND DRILLING PLANS

Mineral explorer Coppermoly Limited is pleased to announce its further plans for drilling at the Nakru-02 prospect.

Exceptionally high grade copper assays received from a surface sampling programme undertaken in late 2013 at the Nakru-02 prospect have clearly identified the area as the Company's priority exploration target. (Refer to the Company's Announcement dated 20 January 2014)

The sampling was focused upon areas that were expected to be mineralised and this was confirmed by the assay results. Copper mineralisation in the samples occurs as primary chalcopyrite associated with secondary chalcocite which is **most encouraging for elevated grades to persist with depth**. All assay results are tabulated in Appendix A.

The recent sampling, taken over an area of 1km², indicates that mineralisation at Nakru-02 may extend a further 400m to the west than previously thought (Figure 1). Surface mineralisation now extends over a strike length of 800m in an east-west direction. The western zone appears to be a separate IP anomaly however thick ash cover in the intervening area may interfere with geophysical and geochemical responses.

Only three diamond core holes have previously been drilled into Nakru-02 testing a strike length of only 150m. All three holes intersected elevated copper-gold mineralisation including narrow high grade zones that reflect the results of the recent surface sampling.

Significant results of previous drilling include:

NAK02-01 8m @ 3.80% copper, 0.19g/t gold from 30.3m and

22m @ 0.83% copper, 0.03g/t gold from 102m and

10m @ 0.53% copper and 0.02g/t gold from 158m

NAK02-02 73m @ 0.96% copper, 0.07g/t gold from 36m including

8m @ 3.18% copper, 0.25g.t gold from 37m.

BWNBDD003 64m @ 0.59% copper, 0.03g/t gold from 141m and

15m @ 0.39% copper, 0.02g/t gold from 269m and

8.9m @ 0.53% copper, 0.36g/t gold from 290.1m and

7.8m@~0.24%~copper~0.13g/t~gold~from~304m.

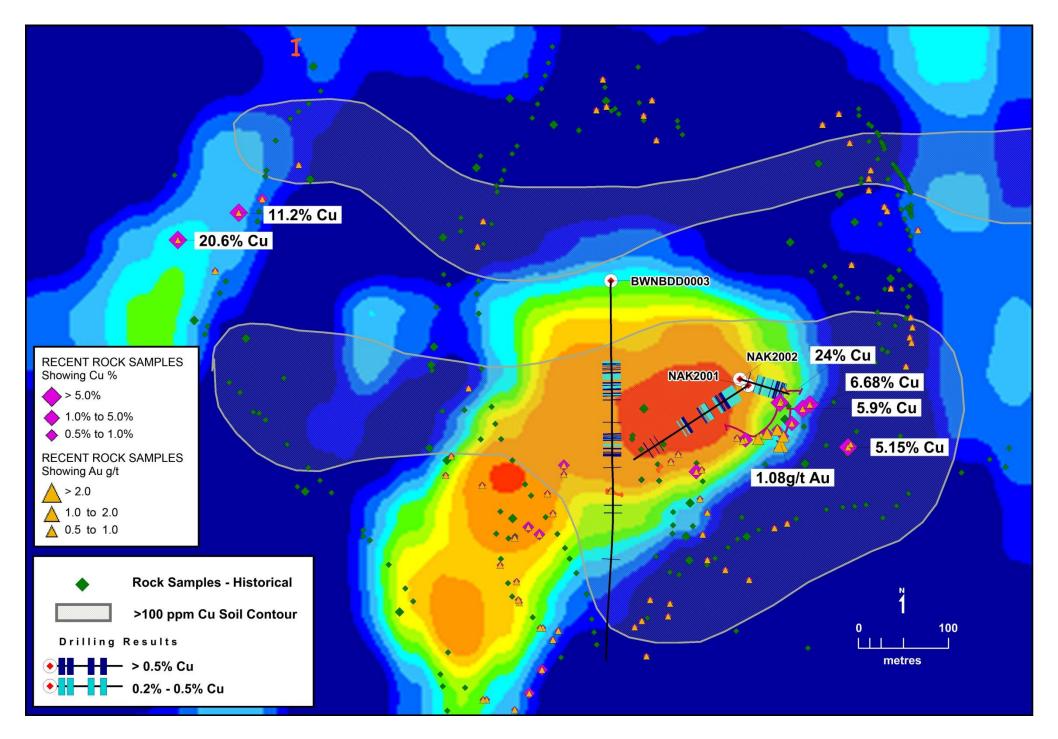


Figure 1: Plan of the Nakru-02 prospect showing IP anomaly (chargeability at 100m depth), previous drill holes and the locations and results of recent rock chip and float sampling programme.

Figure 2: Selected core samples from drillhole BWNBDD003 showing variety of mineralisation styles.

Sulphide mineralisation occurs in hydrothermal breccias and in diffuse quartz veins. Late base metal rich shears contain zinc - gold mineralisation (**Figure 2**). The deposit formed at relative shallow levels in a sub-volcanic environment and has affinities to high level porphyry style mineralisation.

Nakru- 02 has many similarities with Coppermoly's Nakru-01 deposit located approximately 1km to the east. Nakru-01 has a published JORC Inferred Resource of 38Mt @ 0.6% copper and 0.3g/t gold. Nakru-01 has in excess of 20 drill holes drilled over a strike length of 500m.

Coppermoly has a diamond rig located at its exploration base in Kimbe, on the north coast of West New Britain, and is currently undertaking the community awareness program and preparing the deployment of the exploration and drilling crew. The Nakru exploration licence is accessible by dirt road from Kimbe. Coppermoly has always maintained a positive relationship with local communities.

The progress of the drilling will, of course, be carefully monitored in the context of the Company's current cash reserves and future capital requirements.

On behalf of the board,

Maurice Gannon

MANAGING DIRECTOR

Level 1, 91 Upton Street, Bundall, Queensland 4217

Email: info@coppermoly.com.au

Telephone: +61 7 5592 1001

About Coppermoly

Coppermoly's mineral exploration activities are focused entirely on the island of New Britain in PNG where it holds five exploration licences and an additional two under application. These licences cover copper, gold, silver, zinc, molybdenum and iron mineralisation. The five current tenements are Simuku, Talelumas, Nakru, Makmak and Powell. The two tenement applications are Wowonga and Fulleborn.

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr. Mike Erceg, who is a Member of the Australasian Institute of Geoscientists. Mr. Erceg has sufficient experience which is relevant to the style of mineralisation under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Erceg consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

APPENDIX A: ASSAYS NAKRU-02 ROCK AND FLOAT SAMPLES

			Au	Au(R)	Au(S)	Ag	As	Cu	Мо	Cu
METHOD			FAA505	FAA505	FAA505	ICP41Q	ICP41Q	ICP41Q	ICP41Q	AAS41Q
LDETECTION			0.01	0.01	0.01	3	15	25	25	0.01
UDETECTION	GPS Coordina	te	1000	1000	1000	5000	50000	100000	25000	25
UNITS	Northing	Easting	PPM	PPM	PPM	PPM	PPM	PPM	PPM	%
NK2-1001	9338907	220558	0.12	-	-	Х	110	380	40	-
NK2-1002	9338904	220564	0.28	-	-	X	80	4010	50	-
NK2-1003 NK2-1004	9338905 9338906	220567 220581	0.37 0.67	-	-	8 X	100 270	23100 1390	110 120	-
NK2-1005	9338912	220591	0.79	-	-	16	240	9660	130	-
NK2-1006	9338916	220602	0.75	-	-	8	200	8170	210	-
NK2-1007	9338948	220606	0.05	-	-	X	20	1450	X	-
NK2-1008 NK2-1009	9338960 9338944	220609 220638	X	-	-	X 15	X	2600 66800	X	-
NK2-1009 NK2-1010	9338939	220630	X	-	-	26	X	59000	X	-
NK2-1011	9338900	220683	Χ	-	-	Χ	30	220	Х	-
NK2-1012	9338897	220680	X	-	-	X	150	7160	X	-
NK2-1013 NK2-1014	9338897 9338813	220680 220613	X	-	-	10 X	X	51500 2890	X	-
NK2-1014 NK2-1015	9338808	220513	X	X	-	X	X	2890	X	-
NK2-1016	9338751	220571	X	-	-	X	X	230	X	-
NK2-1017	9338762	220545	Х	-	-	26	70	2230	Х	-
NK2-1018	9338773	220525	0.12	-	-	11	110	2450	90	-
NK2-1019 NK2-1020	9338773 9338801	220525 220520	0.14	-	-	8 X	90 90	2420 500	90 X	-
NK2-1020 NK2-1021	9338825	220525	0.06	-	-	7	100	2270	210	-
NK2-1022	9338840	220517	0.01	-	-	Х	90	1520	X	-
NK2-1023	9338870	220513	0.17	-	-	10	80	34000	120	-
NK2-1024	9338872	220519	0.17	0.17	-	X	160	940	160	-
NK2-1025 NK2-1026	9338900 9338909	220606 220609	1.08 0.56	-	-	15	380 360	2190 6500	680 120	-
NK2-1026	9338923	220618	0.30	-	-	26	200	18300	110	-
NK2-1028	9338946	220605	X	-	-	13	50	>100000	X	24
NK2-1029	9339397	221099	0.39	-	-	Х	Х	560	Х	-
NK2-1030	9339388	221120	0.01	-	-	56	20	130	30	-
NK2-1031 NK2-1032	9339381 9339381	221149 221149	2.51 2.46	2.62	-	105 84	210 210	300 300	X	-
NK2-1032 NK2-1033	9339361	221149	0.06	- 2.03	-	X X	90	740	80	-
NK2-1034	9339146	221170	Χ	-	-	18	40	130	Χ	-
NK2-1035	9339202	220705	Χ	-	-	14	1540	40	Х	-
NK2-1036	9339193	220703	0.01	-	-	X	100	120	X	-
NK2-1037 NK2-1038	9339180 9339162	220703 220720	0.07	_	_	X 4	700 50	430 190	50 X	_
NK2-1039	9339157	220723	0.05	-	-	16	320	60	90	-
NK2-1040	9339136	220757	0.18	-	-	12	50	30	Χ	-
NK2-1041	9339072	220727	Χ	-	-	X	20	60	X	-
NK2-1042	9339072	220727 220749	0.01	-	-	X	100	1800	X	-
NK2-1043 NK2-1044	9339040 9339040	220749	0.01	-	-	6 X	40 40	30 30	X	-
NK2-1045	9339029	220751	X	-	-	X	20	130	X	-
NK2-1046	9339018	220748	0.03	-	-	Х	70	30	Х	-
NK2-1047	9339012	220750	X	-	-	4	60	X	X	-
NK2-1048 NK2-1049	9338986 9339098	220744 220684	0.07 0.17	_	-	9	160 50	60 260	60 50	-
NK2-1049 NK2-1050	9338725	220484	X X	-	-	X	40	1400	X X	-
NK2-1051	9338725	220484	X	-	-	X	40	370	Х	-
NK2-1052	9338711	220482	0.01	-	-	Х	120	280	Х	-
NK2-1053	9338729	220462	X 0.12	- 0.1	-	X	X 150	50 170	X	-
NK2-1054 NK2-1055	9338706 9338699	220453 220445	0.12 0.04	0.1	-	X	150 150	170 190	50 30	-
NK2-1056	9338667	220443	X X	-	-	X	X X	70	X X	-
NK2-1057	9338695	220361	Х	-	-	Х	Х	110	Х	-
NK2-1058	9338698	220344	0.06	-	-	X	280	4990	280	-
NK2-1059	9338698	220344	χ 0.03	_	-	X 4	X 470	1870	X	-
NK2-1060 NK2-1061	9338685 9338685	220355 220355	0.03	-	-	X X	470 570	150 50	30 X	-
NK2-1062	9338652	220333	X X	-	-	X	70	100	X	-
NK2-1063	9338652	220343	0.14	-	-	Х	130	8780	30	-
NK2-1064	9338626	220329	0.11	-	-	X	390	5010	90	-
NK2-1065	9338608	220313	Х	-	-	3	30	270	Х	-

			Au	Au(R)	Au(S)	Ag	As	Cu	Мо	Cu
METHOD			FAA505	FAA505	FAA505	ICP41Q	ICP41Q	ICP41Q	ICP41Q	AAS41Q
LDETECTION			0.01	0.01	0.01	3	15	25	25	0.01
UDETECTION	GPS Coordina	te	1000	1000	1000	5000	50000	100000	25000	25
UNITS	Northing	Easting	PPM	PPM	PPM	PPM	PPM	PPM	PPM	%
NK2-1066	9338608	220313	Χ	-	-	163	170	1070	Χ	-
NK2-1067	9338619	220282	0.02	-	-	31	90	4870	Х	-
NK2-1068	9338619	220278	0.02	-	-	7	170	480	X	-
NK2-1069	9338698	220341	X	-	-	X	X 100	610	Χ 20	-
NK2-1070 NK2-1071	9338726 9338729	220318 220317	0.02 X	-	-	X	190 X	2880 X	30 X	-
NK2-1071 NK2-1072	9338749	220317	X	-	-	X	230	710	X	-
NK2-1073	9338743	220297	X	_	_	X	20	1260	X	_
NK2-1074	9338797	220313	0.02	-	-	X	X	30	X	-
NK2-1075	9338801	220340	0.36	-	-	Χ	350	8040	200	-
NK2-1076	9338855	220277	0.16	-	-	6	260	2780	50	-
NK2-1077	9338855	220277	Χ	-	-	Χ	Χ	X	Χ	-
NK2-1078	9338866	220237	Χ	-	-	Χ	Х	240	Χ	-
NK2-1079	9338866	220237	X	-	-	5	Х	1280	X	-
NK2-1080	9338887	220243	X	-	-	X	20	160	X	-
NK2-1081	9338962	220262	X	-	-	X	20	680	X	-
NK2-1082 NK2-1083	9339214	220909	Χ 0.01	- 0.01	-	X	20	X	X	-
NK2-1083 NK2-1084	9339241 9339191	220926 221210	0.01 X	0.01	-	X	20 X	X	X	_
NK2-1084 NK2-1085	9339178	221210	X	_	_	X	X	X	X	_
NK2-1086	9339011	221284	0.06	_	_	X	270	1220	120	_
NK2-1087	9338914	221340	Χ	_	_	X	40	290	30	-
NK2-1088	9338889	220493	0.07	-	-	Χ	50	350	30	-
NK2-1089	9338889	220493	0.07	-	-	Х	80	330	60	-
NK2-1090	9338881	220485	0.03	-	-	Χ	30	100	Χ	-
NK2-1091	9338881	220485	0.02	-	-	Χ	40	100	Χ	-
NK2-1092	9338881	220485	0.01	-	-	Χ	30	100	Х	-
NK2-1093	9338881	220485	Χ	-	-	Х	20	100	Х	-
NK2-1094	9338849	220419	0.02	-	-	X	20	40	Х	-
NK2-1095	9338877	220367	0.38	- 0.39	-	X	350	5270	90 100	-
NK2-1096 NK2-1097	9338877 9338867	220367 220367	0.38	0.38	-	X	340 50	5520 50	X X	-
NK2-1097	9338867	220367	0.02	-	-	X	720	4490	120	-
NK2-1099	9338846	220349	0.04	_	_	X	650	170	X	-
NK2-1100	9338846	220349	0.06	-	-	X	610	220	X	-
NK2-1101	9338824	220355	0.03	-	-	Х	1640	350	Х	-
NK2-1102	9338809	220328	0.17	-	-	7	170	5270	130	-
NK2-1103	9338809	220328	0.15	-	-	6	150	3300	150	-
NK2-1104	9339118	220272	Χ	-	-	Χ	20	320	Χ	-
NK2-1105	9339146	220278	0.28	-	-	7	160	1070	60	-
NK2-1106	9339268	220403	0.08	-	-	9	580	50	30	-
NK2-1107	9339272	220414	0.04	-	-	6	40	180	X	-
NK2-1108 NK2-1109	9339272 9339302	220414 220410	0.05 X	-	-	6 X	30 30	320 40	X 60	_
NK2-1109 NK2-1110	9339302	220410	0.05	-	-	7	90	200	200	-
NK2-1110 NK2-1111	9339202	220455	X V.03	-	-	χ ,	X X	40	X 200	-
NK2-1112	9339279	220464	X	-	-	X	X	70	X	-
NK2-1113	9339235	220469	X	-	-	X	X	X	X	-
NK2-1114	9339264	220670	0.03	-	-	11	480	120	80	-
NK2-1115	9339264	220670	0.03	-	-	45	550	160	140	-
NK2-1116	9339232	220682	Х	-	-	X	90	360	40	-
NK2-1117	9339232	220682	X	-	-	10	270	180	110	-
NK2-1118	9339252	220652	X	- 0.02	-	X	X	Χ 70	X	-
NK2-1119	9339091	219983	0.02	0.03	-	5	80	70	X 710	- 20.6
NK2-1120 NK2-1121	9339125 9339155	219942 220009	0.4	0.37	-	230 204	230 250	>100000 >100000	710 300	20.6 11.2
NK2-1121 NK2-1122	9339155	220009	0.32	-	-	13	250	5790	50	- 11.2
NK2-1123	9339208	220033	X 0.03	_	_	5	X X	140	X X	-
NK2-1124	9339476	221161	0.02	-	-	20	180	700	X	-
NK2-1125	9339475	221159		-	-	Х	Х	40	Х	-

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data NOTE

ROCK CHIP AND FLOAT SAMPLES WERE COLLECTED ON THE NAKRU EXPLORATION LICENCE (EL 1043);

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 NAKRU Rock chips were collected randomly from outcrops with 3 to 5 metre exposure. NAKRU Float samples are selective grab samples from boulders whose provenance is thought to be local (within 50m).
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	No drilling is reported.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential 	No drilling is reported

Criteria	JORC Code explanation	Commentary
	loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnical logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	No drilling is reported.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 NAKRU Rock Chip and Float Samples: All samples were dried and dispatched to SGS Laboratories in Lae where they where they were prepared for assay. The elements silver, arsenic, copper and molybdenum were assayed using the ICP-OES after DIG41Q (aqua regia digest followed by the use of ICP instrumentation) Where copper exceeded the upper detection limit AAS41Q was used. Gold was assayed using FAA505 (fire assay)
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 NAKRU Rock Chip and Float Samples: The assay methods are industry standard for the precious and base metals of interest.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	No drilling is reported
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations 	No drilling is reported

Criteria	JORC Code explanation	Commentary
	 used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 NAKRU – the sampling program was focused upon an area that is considered highly prospective with the objective of defining potential future drilling targets.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 NAKRU – the sampling program was focused upon an area that is considered highly prospective with the objective of defining potential future drilling targets.
Sample security	The measures taken to ensure sample security.	 All samples are stored securely at the Company's exploration base. Any samples sent for assay are sent by courier and managed internally by the assay laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	• n/a

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The NAKRU exploration licence is in good standing. The licence is held by Coppermoly's 100% owned PNG subsidiary, Copper Quest (PNG) Limited. Current interests in the licence are 51% Coppermoly / 49% Barrick (PNG Exploration) Limited. An agreement is in-place which entitles Coppermoly to reacquire 100% ownership by mid-2018. The licence is subject to current (routine) renewal application.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Nakru licence has been explored by a number of companies, most recently Barrick under an exploration agreement with Coppermoly.
Geology	Deposit type, geological setting and style of mineralisation.	NAKRU – has characteristics of both VMS and breccia style

Criteria	JORC Code explanation	Commentary
		mineralisation transitional between porphyry and epithermal systems.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	No drilling is reported
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	• n/a
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	• n/a
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to Figure 1
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of	Refer to Appendix A

Criteria	JORC Code explanation	Commentary
	Exploration Results.	
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	There is no material exploration data that has not been previously reported.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Refer to the Announcement.

Sections 3 to 5 are not applicable to the results reported.